Explore les limites de l'entropie, les théorèmes conditionnels de l'entropie et la règle de chaîne pour les entropies, illustrant leur application à travers des exemples.
Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.