Explore les techniques de visualisation des données, l'impact de la conception et les applications interactives pour une communication efficace de l'information.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Présentation d'Apache Spark, couvrant son architecture, ses RDD, ses transformations, ses actions, sa tolérance aux pannes, ses options de déploiement et ses exercices pratiques dans les blocs-notes Jupyter.
Couvre les principes fondamentaux de la science des données, l'évolution des méthodes scientifiques, le rôle d'un data scientist et l'importance des données en tant que nouveau pétrole.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.