Couvre les concepts fondamentaux de l'algèbre linéaire, y compris les équations linéaires, les opérations matricielles, les déterminants et les espaces vectoriels.
Introduit les bases de l'optimisation, couvrant les normes, la convexité, la différentiabilité, et plus encore, en mettant l'accent sur les métriques, les normes vectorielles, les normes matricielles et la continuité.
Explorer la théorie de la décomposition de la valeur singulaire, les propriétés, l'unicité, l'approximation matricielle et les applications de réduction de dimensionnalité.