Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.