Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Couvre les concepts fondamentaux de la mécanique quantique, y compris les espaces vectoriels, la superposition, les observables et le produit intérieur.
Explore les postulats de la mécanique quantique, y compris les états, observables, les systèmes composites, l'équation de Schrödinger, et les états enchevêtrés.
Couvre les propriétés et les théorèmes liés aux opérateurs compacts et relativement compacts, y compris le théorème de RAGE et le théorème de Kato-Rellich.