Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore la vérification d'un functeur Lie en tant qu'adjoint gauche, avec des transformations naturelles satisfaisant les identités triangulaires et les isomorphismes.
Explore le concept de (co)limites dans l'algèbre homotopique, en discutant des relations entre les functeurs, des cas particuliers, et les propriétés universelles des colimites et des limites.