Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre la théorie du traitement du signal numérique, y compris l'échantillonnage, les méthodes de transformation, la numérisation et les contrôleurs PID.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.
Explore l'échantillonnage d'importance dans les calculs de Monte Carlo, en mettant l'accent sur les changements variables et la sélection de la distribution pour plus d'efficacité.