Régression linéaire : basiques et descente progressive
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les fonctions de perte, la descente de gradient et l'impact de la taille des pas sur l'optimisation dans les modèles d'apprentissage automatique, en soulignant l'équilibre délicat requis pour une convergence efficace.
Explore les régressions paramétriques, en mettant l'accent sur la simplicité et la complexité des compromis de régression linéaire entre les modèles paramétriques et non paramétriques.
Explore les produits intelligents et connectés et leur impact transformateur sur les entreprises, couvrant l'intelligence artificielle, l'apprentissage automatique, les modèles prédictifs, les méthodes de prévision et plus encore.
Explore les classificateurs voisins les plus proches, le compromis entre les biais, la malédiction de la dimensionnalité et les limites de généralisation dans l'apprentissage automatique supervisé.
Explore la convergence de la descente du gradient pour les fonctions fortement convexes et l'importance de la régularisation dans la prévention des surajustements.
Explore les applications d'apprentissage automatique dans la modélisation des matériaux, couvrant la régression, la classification et la sélection des fonctionnalités.