Modèles linéaires généralisés : régression avec réponses familiales exponentielles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore l'estimation du maximum de vraisemblance dans les modèles linéaires, couvrant le bruit gaussien, l'estimation de la covariance et les machines vectorielles de support pour les problèmes de classification.
Couvre le calcul et l'estimation dans la simulation stochastique, en se concentrant sur la génération de répliques iid et l'échantillonnage d'importance optimale.
Discute de la probabilité que les trains à pics soient basés sur des modèles générateurs et des calculs de log-probabilité à partir des données observées.
Explore l'estimation de la probabilité maximale, la régression logistique, l'estimation de la covariance et les machines vectorielles de soutien pour les problèmes de classification.