Explore la transformation de Fourier à temps discret, ses propriétés et les transformations de signaux, y compris des exemples comme l'impulsion rectangulaire et l'impulsion unitaire.
Explique les bases de la transformation de Fourier et démontre son application à travers des exemples, y compris des fonctions périodiques et des paires transformées de Fourier.
Explore les propriétés des transformées de Fourier et des transformées de Fourier inverses, en analysant les trains d'ondes finies, les fonctions gaussiennes et les transformations spatiales 3D.
Explore les propriétés de la transformée de Fourier avec des dérivés et introduit la transformée de Laplace pour la transformation du signal et la résolution des équations différentielles.
Explore Fourier et Laplace se transforment en science des matériaux, en mettant l'accent sur l'interaction lumière-matière, les motifs de diffraction et les propriétés cristallines.
Explore la résolution des équations différentielles à l'aide de données périodiques à l'aide de la série de Fourier et approfondit l'équation de la chaleur dans R.
Couvre la transformée de Fourier sur l'espace Schwartz et ses propriétés, y compris la continuité et la linéarité, ainsi que la densité des fonctions soutenues de manière compacte et lisse.