Explore la règle discriminatoire gaussienne pour la classification à l'aide de modèles de mélange gaussien et discute des limites de dessin et de la complexité du modèle.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre la décomposition des erreurs, la régression polynomiale et les voisins K les plus proches pour la modélisation flexible et les prédictions non linéaires.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.