Couvre les bases de l'apprentissage automatique, y compris la reconnaissance des chiffres manuscrits, la classification supervisée, les limites de décision et l'ajustement des courbes polynômes.
Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.
Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.