Couvre les machines d'apprentissage extrêmes photoniques et le calcul de réservoir, en se concentrant sur leurs architectures, leurs techniques de programmation et leurs applications en informatique optique.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explique le processus d'apprentissage dans les réseaux neuronaux multicouches, y compris la rétropropagation, les fonctions d'activation, la mise à jour des poids et la rétropropagation des erreurs.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.