Séance de cours

Changements de cadres de référence : Mécanique

Dans cours
PHYS-101(c): General physics : mechanics (IN I)
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Description

Cette séance de cours couvre le concept des cadres de référence en mécanique, soulignant la nécessité de décrire le mouvement par rapport à un cadre spécifique. Il explique l'association d'observateurs et d'instruments de mesure avec des cadres de référence, mettant en évidence l'arbitraire du choix des cadres. La séance de cours traite également des cadres privilégiés de référence et de la cohérence des lois physiques entre les différents cadres. Il s'inscrit dans la cinématique d'un point matériel, détaillant les définitions des vitesses et des accélérations dans différents cadres. La dynamique des cadres non inertiels, y compris la force de Coriolis, est également explorée à travers des exemples de mouvement rectiligne uniforme sur un carrousel.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (46)
Accélération
L'accélération est une grandeur physique vectorielle, appelée de façon plus précise « vecteur accélération », utilisée en cinématique pour représenter la modification affectant la vitesse d'un mouvement en fonction du temps. La norme (l'intensité) de ce vecteur est appelée simplement « accélération » sans autre qualificatif. Dans le langage courant, l'accélération s'oppose à la décélération (mathématiquement, une accélération négative) et indique l'augmentation de la vitesse ou de la fréquence d'évolution d'un processus quelconque, par exemple l'accélération de la fréquence cardiaque ou celle d'une suite de situations.
Relativité galiléenne
La relativité galiléenne est un principe physique exprimé par Galilée au , sans être alors nommé ni principe, ni relativité. Il sera présenté par Galilée comme une propriété que confirme l'expérience. Selon ce principe, les lois de la physique restent inchangées dans des référentiels dénommés depuis « galiléens ». Il illustre cela en se supposant enfermé dans la cabine d'un bateau pour observer des gouttes d'eau tomber une à une d'une bouteille.
Moment d'inertie
Le moment d'inertie d'un système physique est une grandeur qui caractérise son inertie vis-à-vis des mouvements de rotation, comme sa masse caractérise son inertie vis-à-vis des mouvements de translation. Il dépend de la valeur et de la répartition des masses au sein du système et a pour dimension (produit d'une masse par le carré d'une longueur) ; il s'exprime donc en dans le Système international d'unités.
Moment quadratique
Le moment quadratique est une grandeur qui caractérise la géométrie d'une section et se définit par rapport à un axe ou un point. Il s'exprime dans le Système international en m (mètre à la puissance 4). Le moment quadratique est utilisé en résistance des matériaux, il est indispensable pour calculer la résistance et la déformation des poutres sollicitées en torsion () et en flexion ( et ). En effet, la résistance d'une section sollicitée selon un axe donné varie avec son moment quadratique selon cet axe.
Moment (probabilités)
En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
Afficher plus