Couvre les récipients à pression linéaires et les bases de la géométrie différentielle des surfaces, y compris les vecteurs de base covariants et contravariants.
Couvre les récipients à pression linéaire, les coquilles minces et la pression critique de flambage, en mettant l'accent sur la réduction dimensionnelle de 3D à 2D.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les fondamentaux de la géométrie différentielle des surfaces, y compris l'équilibre des coquilles, des récipients sous pression, et la courbure des surfaces.
Couvre les systèmes de coordonnées accélérés et inertiels, jacobiens, les éléments de volume, les dérivés covariants, les symboles Christoffel, le cas Lorentz et les propriétés tenseurs métriques.
Couvre les principaux points de la relativité restreinte, y compris les symétries, les transformations, les 4 vecteurs, les équations de Maxwell et le temps approprié.