Récapitulation des réseaux neuraux : fonctions d'activation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Explore Kernel Principal Component Analysis, une méthode non linéaire utilisant des noyaux pour la résolution linéaire de problèmes et la réduction des dimensions.
Présente la structure du cours et les concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage supervisé et la régression linéaire.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.
Explore la réduction des dimensions linéaires grâce à la PCA, à la maximisation de la variance et à des applications réelles telles que l'analyse des données médicales.
Couvre l'expansion des fonctionnalités polynômes, les fonctions du noyau, la régression et le SVM, soulignant l'importance de choisir les fonctions pour l'expansion des fonctionnalités.