Modélisation de données dans les neurosciences: Meenakshi Khosla
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de l'évolution des réseaux de neurones artificiels, des défis de l'apprentissage supervisé et du rôle des comportements innés dans la formation du comportement.
Discute des définitions et de l'évaluation des niveaux de conscience par le biais de neuroimagerie et de réseaux cérébraux, en mettant l'accent sur la connICA pour cartographier les traits fonctionnels du connectome.
Couvre les mécanismes de rétroaction dans l'intelligence visuelle, l'estimation des poses humaines, l'adaptation motrice dans les robots à pattes et les contrôleurs PID.
Explore l'intégration de la structure et de la fonction cérébrales à l'aide des techniques de traitement des signaux graphiques, y compris l'IRM fonctionnelle et l'analyse du connectome structurel.
Explore le développement d'un modèle mathématique du cerveau, axé sur l'organisation et la dynamique du cerveau, y compris les modèles d'activité neuronale et les phénomènes émergents.
Explore les mécanismes derrière l'émotion et l'expression dans la musique, couvrant les réflexes du cerveau, l'entraînement rythmique, la mémoire et l'impact culturel.
Explore la modélisation de données in vitro pour les neurosciences informatiques, y compris la prédiction de la tension sous-seuil et des temps de pointe.