Intelligence en temps réel : défis liés aux données et évolution du matériel
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Explore l'hydraulique fluviale, la modélisation et l'étalonnage en utilisant une approche semi-distribuée pour des prévisions précises et la gestion des ressources en eau.
Explore Apache Hive pour l'entreposage de données, les formats de données et la partition, avec des exercices pratiques dans la requête et la connexion à Hive.
Explore la création de tableaux de bord dans ServiceNow, en mettant l'accent sur les avantages, la transition des pages d'accueil et des concepts importants comme les tâches et les incidents.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.