Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.