Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Explore les modèles linéaires pour la classification, la régression logistique, les limites de décision, la SVM, la classification multi-classes et les applications pratiques.
Explore les modèles linéaires pour la classification, y compris la classification binaire, la régression logistique, les limites de décision et les machines vectorielles de support.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.