Séance de cours

Clustering Evaluation

Séances de cours associées (36)
Caractérisation des clusters : Homogénéité, Séparabilité
Explore le centroïde, le médioïde, l'homogénéité, la séparabilité dans le clustering, l'évaluation de la qualité, la stabilité, les connaissances d'experts et les algorithmes de clustering.
Groupement : moyenne en k
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Physique statistique des grappes
Explore la physique statistique des clusters, en se concentrant sur la complexité et le comportement d'équilibre.
Prédire les précipitations: Miniprojet BIO-322
Introduit un mini-projet où les étudiants prédisent les précipitations à Pully en utilisant l'apprentissage automatique, en mettant l'accent sur la reproductibilité et la qualité du code.
Méthodes de regroupement
Couvre les méthodes de regroupement des moyennes K, hiérarchiques et DBSCAN avec des exemples pratiques.
Apprentissage sans supervision : méthodes de regroupement
Couvre l'apprentissage non supervisé axé sur les méthodes de regroupement et les défis rencontrés dans les algorithmes de regroupement comme K-means et DBSCAN.
Clustering: Théorie et pratique
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Aperçu de l'apprentissage supervisé
Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Groupement de comportements non supervisés
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Apprentissage sans supervision: PCA & K-means
Couvre l'apprentissage non supervisé avec l'APC et les moyennes K pour la réduction de dimensionnalité et le regroupement des données.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.