Séance de cours

Régression multi-linéaire

Séances de cours associées (33)
Régression linéaire : notions de base et interprétation géométrique
Explore la régression linéaire gaussienne, la matrice de conception, l'estimation des moindres carrés et l'interprétation géométrique dans l'analyse de régression linéaire.
Régression linéaire : bases et estimation
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Régression : Modèles linéaires
Explore la régression linéaire, les moindres carrés, les résidus et les intervalles de confiance dans les modèles de régression.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Comprendre les attributs de données
Couvre l'analyse de divers attributs de données et modèles de régression linéaire.
Régression linéaire : Inférence statistique et régularisation
Couvre le modèle probabiliste de régression linéaire et l'importance des techniques de régularisation.
Régression logistique : prédiction de la végétation
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Géométrie et moindres carrés
Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Flexibilité des modèles et de l'échange de devises
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.