Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.
Explore la dynamique quantique de plusieurs corps à l'aide de réseaux neuronaux artificiels, en mettant l'accent sur les simulations expérimentales et les défis théoriques.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Explore les réseaux neuronaux convolutifs pour la classification des images, en se concentrant sur les défis de poids, les stratégies de prévention de surajustement et les modèles pré-entraînés.
Explore les techniques d'apprentissage non supervisées pour réduire les dimensions des données, en mettant l'accent sur l'APC, l'ADL et l'APC du noyau.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.