Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Couvre le calcul des nerfs et la réalisation géométrique dans des ensembles simpliciaux, ainsi que des foncteurs entrant et sortant de la catégorie des ensembles simpliciaux.