Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Couvre la représentation des données, la formation MLP, les fonctions d'activation et l'apprentissage basé sur le gradient dans les réseaux de neurones profonds.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.
Introduit des perceptrons multicouches (MLP) et couvre la régression logistique, la reformulation, la descente de gradient, AdaBoost et les applications pratiques.
Explore le surajustement dans la régression polynomiale, en soulignant l'importance de la généralisation dans l'apprentissage automatique et les statistiques.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.