Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
PreuveUne preuve, (en science ou en droit) est un fait ou un raisonnement propre à établir la vérité. Une preuve est associée à son niveau d'incertitude quand elle est utilisée. Les éléments inductifs et déductifs qui y sont attachés lui confèrent donc un certain niveau d'incertitude. L'évaluation intuitive de ce niveau détermine le degré de confiance qu'on peut apporter à la preuve. La plupart des preuves utilisées dans la vie courante sont communément admises comme étant dignes de confiance.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Preuve (droit)vignette|Police scientifique cherchant des empreintes digitales qui serviront de preuves En droit, une preuve est un élément qui permet à un tiers de s'assurer de la véracité d'un fait. Dans la plupart des législations pénales ou civiles, l'altération de preuves visant, soit à altérer, falsifier ou effacer des traces ou indices, soit d’ouvrir une fausse piste, constitue une infraction grave punie par la loi. Preuve en droit civil français Preuve en droit pénal français Preuve en droit civil québécois Charge
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .