Couvre les machines d'apprentissage extrêmes photoniques et le calcul de réservoir, en se concentrant sur leurs architectures, leurs techniques de programmation et leurs applications en informatique optique.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Couvre la préparation pour dériver l'algorithme Backprop dans des réseaux en couches en utilisant des perceptrons multicouches et la descente de gradient.
Explore l'histoire, les modèles, la formation, la convergence et les limites des réseaux neuronaux, y compris l'algorithme de rétropropagation et l'approximation universelle.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Couvre les questions pratiques et les objectifs de l'apprentissage profond, y compris les types de neurones, l'architecture du réseau, l'optimisation et l'initialisation du poids.