Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Explore le transport optimal et les flux de gradient dans Rd, en mettant l'accent sur la convergence et le rôle des théorèmes de Lipschitz et Picard-Lindelf.
Explore les fonctions convexes, y compris la convexité, les transformations, les exemples, la minimisation, l'intuition géométrique, le lemme de Schur, la fonction de distance, la fonction de perspective et l'entropie relative.
Introduit des ensembles et des fonctions convexes, en discutant des minimiseurs, des conditions d'optimalité et des caractérisations, ainsi que des exemples et des inégalités clés.
Explore les bases de l'optimisation telles que les normes, la convexité et la différentiabilité, ainsi que les applications pratiques et les taux de convergence.