Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore les transformations de Lorentz, les tenseurs covariants, l'invariance de rotation et les transformations linéaires dans les espaces vectoriels.