Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Explore l'approche structurée de l'analyse exploratoire des données spatiales, en soulignant l'importance des cadres analytiques et du mantra de recherche visuelle.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.