Explore les tests t, les intervalles de confiance, l'ANOVA et les tests d'hypothèse dans les statistiques, en soulignant l'importance d'éviter les fausses découvertes et de comprendre la logique derrière les tests statistiques.
Fournit un aperçu de la théorie des probabilités de base, de l'ANOVA, des tests t, du théorème de limite centrale, des métriques, des intervalles de confiance et des tests non paramétriques.
Explore les tests d'hypothèses statistiques, y compris la construction d'intervalles de confiance, l'interprétation des valeurs p et la prise de décisions en fonction des niveaux d'importance.
Explore l'échantillonnage dans les statistiques inférentielles, en mettant l'accent sur l'impact de la taille de l'échantillon et du caractère aléatoire sur la précision de l'inférence.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Couvre la théorie des probabilités de base, la théorie de la détection des signaux, les statistiques et les méta-statistiques, expliquant la taille des effets, la puissance et les tests d'hypothèses.