Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'autocorrélation, la périodicité et les corrélations fallacieuses dans les données de séries chronologiques, en soulignant l'importance de comprendre les processus sous-jacents et de mettre en garde contre les erreurs d'interprétation.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore la distribution 3D des galaxies, des amas de galaxies et de l'arrière-plan cosmique des micro-ondes, éclairant les contenus et les propriétés de l'univers observable.
Couvre l'exploitation efficace des données grâce à des méthodes de clustering et à l'optimisation des rendements du marché à l'aide du clustering d'actifs.
Explore les copules dans les statistiques multivariées, couvrant les propriétés, les erreurs et les applications dans la modélisation des structures de dépendance.