Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.
Couvre les bases de l'apprentissage automatique, y compris la reconnaissance des chiffres manuscrits, la classification supervisée, les limites de décision et l'ajustement des courbes polynômes.
Plonge dans la dimensionnalité de l'apprentissage profond, la représentation des données et la performance dans la classification des données à grande dimension, explorant la malédiction de la dimensionnalité et le noyau tangent neuronal.
Couvre les bases de la régression linéaire, y compris l'ingénierie des caractéristiques, l'apprentissage supervisé ou non supervisé, et minimise la fonction de coût.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Couvre les techniques d'apprentissage supervisées et non supervisées dans l'apprentissage automatique, en mettant en évidence leurs applications dans la finance et l'analyse environnementale.