Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore les avantages prouvables d'une surparamétrie dans la compression des modèles, en mettant l'accent sur l'efficacité des réseaux neuronaux profonds et sur l'importance du recyclage pour améliorer les performances.
Couvre les modèles d'estimation statistique, les estimateurs de ML, les machines d'apprentissage, les problèmes pratiques et les défis de l'estimation.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore l'apprentissage des modèles graphiques avec les estimateurs M, la régression des processus Gaussiens, la modélisation Google PageRank, l'estimation de la densité et les modèles linéaires généralisés.
Couvre le rôle des modèles et des données dans lapprentissage statistique et les formulations doptimisation, avec des exemples de problèmes de classification, de régression et destimation de la densité.
Explore la régression multilinéaire pour l'optimisation de la conception et l'orthogonalité, couvrant le travail d'équipe, les résumés, les modèles linéaires et quadratiques, ANOVA et les structures d'alias.