Explore le SVM non linéaire en utilisant des noyaux pour la séparation des données dans des espaces de dimension supérieure, optimisant l'entraînement avec des noyaux pour éviter des transformations explicites.
Explore les noyaux pour simplifier la représentation des données et la rendre linéairement séparable dans les espaces de fonctionnalités, y compris les fonctions populaires et les exercices pratiques.
Couvre l'étude des groupes de traduction sur l'intervalle [0,1] avec différentes phases et le théorème de représentation de Riesz sur l'espace de Hilbert.
Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore les astuces du noyau dans les machines vectorielles de support pour un calcul efficace dans les espaces de grande dimension sans transformation explicite.
Explore le théorème du représentant, les applications SVM, la mesure de la fluidité, les combinaisons de noyaux et l'évolutivité dans les méthodes du noyau.