Couvre les conjectures de Weil sur la rationalité, l'équation fonctionnelle et l'hypothèse de Riemann, explorant les propriétés des variétés en géométrie algébrique.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore les nombres dintersection pour compter les solutions aux équations polynomiales algébriquement et leur signification géométrique dans la théorie des intersections et la géométrie énumérative.