Couvre les fondements de la théorie des groupes en physique, en se concentrant sur les symétries et les transformations laissant les équations physiques inchangées.
Explore la chiralité, la complétude de groupe, les groupes abéliens, les classes conjuguées et les groupes isomorphes en symétrie et en théorie des groupes.
Explore la théorie des groupes en physique quantique, en mettant l'accent sur les représentations réductibles et irréductibles, les lois de conservation et les propriétés de groupe.
Explore les représentations de la symétrie C3v, des tables de caractères, des symboles Mulliken et des applications de la théorie des groupes dans les fonctions propres.
Couvre la construction de produits tenseurs de représentations, la recherche de bases correctes pour les matrices et l'importance de la symétrie dans les problèmes de physique.