Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore la régularisation dans des modèles linéaires, y compris la régression de crête et le Lasso, les solutions analytiques et la régression de crête polynomiale.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Couvre le test du rapport de probabilité dans les modèles de choix, l'analyse comparative et les tests pour les variations du goût et les spécifications non linéaires.