Explore les schémas implicites dans l'analyse numérique, en mettant l'accent sur les propriétés de stabilité et de convergence dans la résolution des équations différentielles.
Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.