Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Explore la densité spectrale de puissance, le théorème de Wiener-Khintchine, l'ergonomie et l'estimation de corrélation dans les signaux aléatoires pour le traitement du signal.
Explore la prédiction linéaire, les filtres optimaux, les signaux aléatoires, la stationnarité, l'autocorrélation, la densité spectrale de puissance et la transformée de Fourier dans le traitement du signal.
Couvre l'estimation spectrale dans l'analyse des séries chronologiques, y compris les noyaux d'imagerie, les méthodes de compression et les modèles AR.
Explore les fondamentaux de l'analyse des séries chronologiques, y compris la stationnarité, les processus linéaires, la prévision et les aspects pratiques.