Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Explore l'estimation maximale de la probabilité, couvrant les hypothèses, les propriétés, la distribution, l'estimation du rétrécissement et les fonctions de perte.