Densité des États et inférence bayésienne en mathématiques computationnelles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les techniques de réduction de la variance dans la simulation stochastique, en mettant l'accent sur l'utilisation de variables aléatoires auxiliaires et de moyennes d'échantillons pour améliorer l'efficacité.
Explore l'inférence semi-paramétrique pour les données manquantes et non aléatoires, en abordant les défis de l'analyse statistique et en proposant un estimateur double-robuste.
S'oriente vers l'estimation optimale, le rôle de biais dans les échantillons finis, et le compromis délicat entre le biais et la variance dans l'estimation statistique.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.