Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explorez l'interaction homme-robot, l'engagement des étudiants et l'analyse de l'apprentissage à l'aide de données multimodales pour améliorer les processus éducatifs.
Explique comment les robots manipulent des objets en utilisant des instructions en langage naturel et intègre des modèles de langage de vision pour améliorer les performances.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Explore le contrôle conforme pour les robots par impédance et rigidité variable, permettant des interactions sûres et adaptatives avec l'environnement.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore les robots volants interactifs et respectueux de l'environnement, couvrant la prévision du vent, le vol autonome, les stratégies de contrôle, les défis auxquels sont confrontés les drones omnidirectionnels et les technologies de pointe.