S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Explore la logique de la fonction neuronale, le modèle Perceptron, les applications d'apprentissage profond et les niveaux d'abstraction dans les modèles neuronaux.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.