Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Explore l'IA socialement consciente pour la mobilité des derniers milles, se concentrant sur la compréhension des étiquettes sociales, l'anticipation des comportements et la prévision des mouvements de foule.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Explore des exemples contradictoires, des défenses et une robustesse certifiée dans l'apprentissage profond, y compris le lissage gaussien et les attaques perceptuelles.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.
Explore l'intelligence, la perception et les applications de l'IA dans les véhicules autonomes, en mettant l'accent sur la pensée rationnelle et l'intelligence sociale.
Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.