Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.