Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Processus Gram-Schmidt : Vecteurs et bases orthogonaux
Graph Chatbot
Séances de cours associées (22)
Précédent
Page 1 sur 3
Suivant
Orthogonalité et projection
Couvre l'orthogonalité, les produits scalaires, les bases orthogonales et la projection vectorielle en détail.
Décomposition de la valeur singulière : applications et interprétation
Explique la construction de U, la vérification des résultats et l'interprétation de SVD dans la décomposition matricielle.
Indépendance linéaire et base
Explique l'indépendance linéaire, la base et le rang matriciel avec des exemples et des exercices.
Bases orthogonales dans les espaces vectoriels
Couvre les bases orthogonales, la méthode Gram-Schmidt, l'indépendance linéaire et les matrices orthonormées dans les espaces vectoriels.
Décomposition de valeur singulière: vecteurs orthogonaux et décomposition matricielle
Explique la décomposition de la valeur singulière, en se concentrant sur les vecteurs orthogonaux et la décomposition matricielle.
Bases orthogonales et projection
Introduit les bases orthogonales, la projection sur les sous-espaces, et le processus Gram-Schmidt dans l'algèbre linéaire.
Algèbre linéaire : dépendance et indépendance linéaires
Explore la dépendance linéaire et l'indépendance des vecteurs dans les espaces géométriques.
Algèbre linéaire: espaces vectoriels et indépendance linéaire
Couvre les espaces vectoriels, les opérations et l'indépendance linéaire avec des exemples de polynômes et de fonctions.
Familles et projections orthogonales
Explique les familles orthogonales, les bases et les projections dans les espaces vectoriels.
Indépendance linéaire et bases dans les espaces vectoriaux
Explique l'indépendance linéaire, les bases et la dimension dans les espaces vectoriels, y compris l'importance de l'ordre des vecteurs dans une base.