Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Couvre l'intégration du stockage de données évolutives et de la carte réduisent le traitement à l'aide de Hadoop, y compris HDFS, Hive, Parquet, ORC, Spark et HBase.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Explore l'évolution de l'analyse des données à l'IA et au ML, en mettant l'accent sur les mégadonnées, l'apprentissage automatique et l'interaction avec les médias sociaux.
Présentation d'Apache Spark, couvrant son architecture, ses RDD, ses transformations, ses actions, sa tolérance aux pannes, ses options de déploiement et ses exercices pratiques dans les blocs-notes Jupyter.
Explore Apache Hive pour l'entreposage de données, les formats de données et la partition, avec des exercices pratiques dans la requête et la connexion à Hive.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.