Couvre les récipients à pression linéaires et les bases de la géométrie différentielle des surfaces, y compris les vecteurs de base covariants et contravariants.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Explore la projection stéréographique et les tenseurs métriques sur des plans hyperboliques, en mettant l'accent sur l'isométrie et les modèles conformes.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.