Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des concepts de modélisation de données, l'utilisation de SQL et des applications de bibliothèque Pandas pour un traitement efficace des données.
Couvre l'essentiel de la science des données, y compris le traitement, la visualisation et l'analyse des données, en mettant l'accent sur les compétences pratiques et l'engagement actif.
Couvre la création, la modification et la suppression de tables, l'insertion, la mise à jour et la suppression de données, et discute brièvement des vues.
Introduit le modèle relationnel, SQL, les clés, les contraintes d'intégrité, la traduction ER, les entités faibles, les hiérarchies ISA et SQL vs. noSQL.
Explore la diffusion totale et l'analyse PDF dans la science des matériaux, couvrant la synthèse in situ, les techniques d'analyse de données et les applications dans les systèmes hôte-invité.
Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.
Introduit le modèle relationnel et l'algèbre relationnelle, en se concentrant sur SQL et ses opérations pour une gestion efficace des bases de données.